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Abstract

Multi-voxel pattern analysis often necessitates feature selection due to the high dimensional nature of neuroimaging data. In this
context, feature selection techniques serve the dual purpose of potentially increasing classification accuracy and revealing sets of
features that best discriminate between classes. However, feature selection techniques in current, widespread use in the literature
suffer from a number of deficits, including the need for extended computational time, lack of consistency in selecting features
relevant to classification, and only marginal increases in classifier accuracy. In this paper we present a novel method for feature
selection based on a single-layer neural network which incorporates cross-validation during feature selection and stability
selection through iterative subsampling. Comparing our approach to popular alternative feature selection methods, we find
increased classifier accuracy, reduced computational cost and greater consistency with which relevant features are selected.
Furthermore, we demonstrate that importance mapping, a technique used to identify voxels relevant to classification, can lead to the
selection of irrelevant voxels due to shared activation patterns across categories. Our method, owing to its relatively simple architecture,
flexibility and speed, can provide a viable alternative for researchers to identify sets of features that best discriminate classes.
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Introduction

The last decade has seen a marked increase in the number of
imaging studies utilizing multi-voxel pattern analysis
(MVPA). MVPA is a collection of machine learning tech-
niques that allows a model-free approach to decoding mental
states from distributed patterns of activity in imaging studies.
This is in contrast to traditional univariate statistics, which
look at the relationship between cognitive variables and
BOLD activity, typically using a General Linear Modeling
approach. Several notable benefits of MVPA compared to
traditional analyses are more sensitive detection of cognitive
states, increased temporal resolution allowing us to relate brain
activity to behavior on a short timescale and characterizing how
the brain represents cognitive states (Norman et al. 2000).
While MVPA approaches have the potential to reveal cog-
nitive states underlying BOLD activity with much more
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sensitivity than traditional univariate approaches, a number
of methodological obstacles must be addressed before the full
impact of MVPA methods can be realized. A critical obstacle
in this respect is the relative sparseness of observations rela-
tive to the number of features (Guyon and Elisseeff 2003).
Due to the coarse temporal resolution of fMRI, which typical-
ly requires 2 s to record BOLD activity throughout the entire
brain, only a limited number of observations are feasible for a
specific condition in a reasonable fMRI study. In contrast, the
number of potential features (voxels) available for use in
MVPA classification is quite high due to the fine spatial res-
olution allowed by fMRI. The asymmetry between the num-
ber of features and number of observations to classify is prob-
lematic because, as the dimensionality of the feature space
increases, the space in which the observations are to be clas-
sified grows geometrically. As a result, observations appear to
be sparsely distributed within this high-dimensional space,
and distinct from each other, with the consequence that clas-
sifiers used in MVPA may be unable to estimate accurate
decision boundaries, or may overfit on training data. Thus,
the performance of a classifier will decrease as the dimension-
ality of the features becomes too large, because the classifier
picks up on peculiarities of the data and loses generalizability
to new observations.
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A number of methods have been devised to ameliorate this
problem, known as the curse of dimensionality (Mahmoudi
et al. 2012). One approach is cross-validation, in which the
original data is partitioned into complementary subsets: a train-
ing set, a validation set, and a test set. During classifier training,
the validation set is used to tune parameters and monitor for
overfitting, while the unrelated test set is then used to assess
performance of the classifier on data it was not trained on. A
second method for addressing the curse of dimensionality is
through reducing the dimensionality directly (Cao and Chong
2002). One class of approaches is feature extraction, where the
original set of features is replaced by a smaller set of new
features derived from the original features. A popular feature
extraction method is principal component analysis where the
number of features is transformed into a new set of features that
are linearly uncorrelated (principal components) and are sorted
in terms of how much variance in the data they account for.

A third approach to dimensionality reduction is feature
selection, where an optimal subset is chosen from among the
original features. These are usually categorized as either wrap-
per, embedded or filter techniques based on how the selection
algorithm and model building are combined (Mwangi et al.
2014; Saeys et al. 2007). Wrapper methods evaluate the
“utility” of features based on classifier performance, and thus
directly work to solve the problem of optimizing classification
accuracy, which is often the end goal of feature selection. A
popular wrapper approach is recursive feature elimination
(RFE) (De Martino et al. 2008; Guyon et al. 2002), which is
a backward feature selection procedure that prunes irrelevant
features until optimal accuracy is obtained. A major drawback
to this approach is the computational cost of iterative learning
steps and the need for cross-validation. In contrast, filter ap-
proaches are much faster but do not attempt to maximize ac-
curacy (Das 2001). Instead, they apply statistical measures to
score each feature on its “relevance”. Examples of this are
correlation-based feature selection (Hall 1998), ReliefF (I.
Kononenko and Simec 1995) and mutual information
(Vergara and Estévez 2014). Lastly, embedded methods are
similar to wrapper methods in that they are also used to opti-
mize performance of a learning algorithm (Chandrashekar and
Sahin 2014). However, with embedded methods, the subset
size selection is an inherent part of the model and not done
separately. The most common embedded feature selection
methods are regularization methods, which use constraints
and penalizations to eliminate features during model building,
e.g. LASSO regression (Ma and Huang 2008). Beyond their
utility in alleviating the curse of dimensionality, feature selec-
tion methods can also decrease the time needed for classifica-
tion, produce results that facilitate interpretation and, perhaps
most importantly, increase the accuracy of classification
(Chandrashekar and Sahin 2014). With respect to this last
point, it has been found that increases in accuracy following
feature selection can be inconsistent and are highly dependent
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on the nature of the data and on the methods used (Chu et al.
2012; Kerr et al. 2014).

The past two decades have seen an explosion of proposed
feature selection algorithms and choosing the method that best
fits your data can be a daunting task. According to Li et al.
(2017), traditional feature selection algorithms for generic data
can be grouped into four categories based on the techniques
adopted during the feature selection process: similarity based,
information theoretical based, sparse learning based and sta-
tistical based algorithms. Similarity based algorithms deter-
mine feature importance by looking at how well features pre-
serve data similarity. The aforementioned ReliefF method can
be seen as a similarity based algorithm and other examples
include SPEC (Zheng Zhao and Liu 2007) and the Trace Ratio
Criterion (Nie et al. 2008). A potential downside of these
methods is that they do not remove redundant features during
the selection process. Redundancy occurs when features are
highly correlated. Thus, including redundant features, even
though they are relevant, imparts no additional information,
which can lead to increased training times and decreased ac-
curacy (Ding and Peng 2005). When dealing with redundant
data, theoretic based algorithms are often considered.
Examples of such methods which consider both feature rele-
vance and feature redundancy are conditional mutual informa-
tion maximization (Fleuret 2004) and minimum redundancy
maximum relevance (Peng et al. 2005). Sparse learning based
methods are essentially embedded feature selection methods,
although RFE-SVM is also included in this category due to its
iterative pruning of features as part of the algorithm. Lastly,
statistical based methods analyze features individually and
rely on statistical measures to assess the importance of a fea-
ture. The F-score (Wright 1965) and Chi-Square score (Liu
and Setiono 1995) are popular and widely used examples of
this category. An in-depth overview of these methods and
more can be seen in the review paper by Li et al. (2017).

While feature selection’s primary function is usually to
improve predictive performance, it can also be used to identify
meaningful sets of features that are important contributors to
classification (Norman et al. 2006). Such subsets of features
can then more efficiently predict new data, while effects from
noise or irrelevant features are reduced. A smaller amount of
highly informative voxels may also improve interpretation
and provide insight into how cognitive states are represented
anatomically. However, in order to aid interpretation, it is vital
that the set of voxels selected in this way is robust despite
variance in training data (Dernoncourt et al. 2014). This sen-
sitivity to changes in the training set is called stability and has
been extensively studied in learning algorithms (Turney
1995), but only more recently investigated for feature selec-
tion (Alexandros Kalousis et al. 2007). Stability is generally
measured by looking at relations between feature sets, rank-
ings or weights. Metrics include Pearson correlation,
Spearman rank correlation, Hamming distance (Saeys et al.
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2008), Jaccard similarity (Fan and Chou 2016) and entropy
(Ktizek et al. 2007). General frameworks and methods to in-
crease stability for feature selection have also been developed
recently. Examples of this are ensemble classification methods
(Saeys et al. 2008), stability selection (Meinshausen and
Biithlmann 2010), Random Subspace Bayesian Learning
(Yan et al. 2014) and combined performance/stability metrics
(Kirk et al. 2013).

While feature selection methods with high stability might
consistently select the same features, there is no guarantee that
these features are relevant, i.e. a stable feature selection method
might consistently identify features that do not improve classifi-
cation accuracy. Conversely, a method can improve accuracy, but
select wildly varying sets of features each iteration, since different
sets of features can result in similar accuracy scores, which can
occur when there are many correlated variables or features with
similar information content (Ktizek et al. 2007). Thus, the prob-
lem of feature selection is to find methods which can reliably
extract all voxels important to classification as this will lead to the
better interpretability and good predictive performance.

Unfortunately, in many cases, we do not have knowledge
of what the important features are, otherwise feature selection
would be unnecessary. This is especially true for Big Data
sets, such as fMRI, in which thousands of features might con-
tribute to classification accuracy, but it is unknown a priori
which features those may be. Assessing the relative perfor-
mance of feature selection methods on real data is thus prob-
lematic, and may benefit from the use of simulated data re-
sembling experimental data so that we know the precise data
generation procedure and which features are truly important to
classification. Such data sets can serve an important role in
benchmarking feature selection methods (Bolon-Canedo et al.
2013), yet they are rarely used compared to real data or along-
side it for the purpose of testing feature selection methods.

In short, while feature selection methods have the potential to
greatly enhance the application of MVPA to fMRI data, a num-
ber of questions must be addressed before this can take place.

Goal of the Current Study

In this study, we propose a novel procedure for consistently
extracting relevant features from simulated and fMRI data.
This procedure is based on a single-layer neural network with
cross-validation after weight-updating. Our procedure makes
use of a variant of stability selection by summing weights
across iterations and choosing only those features whose
weights pass a predefined threshold. The method is simple,
fast, and straightforward to implement. We compare our ap-
proach to existing methods for feature selection or importance
mapping, on simulated and real experimental data and find
that our approach consistently outperforms the alternative
methods on stability, detection of relevant voxels and predic-
tive accuracy.

Methods
Classifiers and Feature Selection Methods
Support Vector Machines

Support vector machines (SVM) (Boser et al. 1992; Cortes
and Vapnik 1995) are a popular supervised machine learning
technique used in classification and regression problems. It
attempts to separate points in n-dimensional space by finding
the hyperplane that maximizes the distance between the
nearest points of each class (support vectors). SVM’s can han-
dle non-linear decision boundaries by making use of the ker-
nel trick, but in this study we limit ourselves to linear SVM’s.
The formulation for the optimization of the soft margin SVM
used here is as follows:

minweRd,g,eR+||WH2 +CY¢ )
(1
Subject to :y; (wa,- + b) >1-¢,fori=1...N

Where &; are “slack™ variables that allow misclassified data
points and C is a regularization parameter so that if C is small,
constraints can easily be ignored and if C is large they are hard
to ignore. This ensures convergence even when the problem is
not perfectly separable. The case where C = « is equal to the
hard margin SVM.

Classifying new trials x,,,,, can be done by evaluating:

sign (W xpe + b) (2)

In this study, SVM’s were used in conjunction with RFE, to
establish the feature subset size (Haxby data) and to test per-
formance after feature selection. A multi-class linear SVM
was used for the Haxby data set and a binary SVM for the
simulated data.

RFE-SVM

RFE is a wrapper approach which begins with the full feature
set and iteratively removes a prespecified number of features
after evaluation. It was originally created to be used in tandem
with SVM’s (De Martino et al. 2008; Guyon et al. 2002).
SVM weight values are used as a ranking criterion for back-
ward feature elimination. Here we added feature rankings
across iterations to determine those most important for classi-
fication and then used a feed-forward cross-validation proce-
dure (Haxby data) or the 20 most important features
(simulation) to determine subset size.

RFE-SVM is a well-established technique that has been
extensively benchmarked and compared to other techniques
(Bolon-Canedo et al. 2013; Chu et al. 2012; Dittman et al.
2011; Fan and Chou 2016; Haury et al. 2011; Alexandros
Kalousis et al. 2007; Stiglic and Kokol 2010; Tohka et al.
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2016). A general outline of the RFE-SVM procedure can be
seen in Table 1. This procedure is embedded in a general
procedure that is common to all methods described in this
paper (Tables 3 and 4).

Importance Mapping

While RFE-SVM is a current state-of-the-art feature selection
technique that can be used to detect relevant features for clas-
sification, early proposals for determining important features
that employ neural networks (NN) are still widely used, pos-
sibly because it is less computationally intensive to identify
features by the weights learned in neural network approaches.
One such approach is “importance mapping” (Polyn et al.
2005) used extensively in fMRI studies, in which a single-
layer NN is utilized as a classifier for MVPA, after which
the weights of the network are multiplied by average feature
activity for each class to determine feature importance.

imp; = wi*avg;, (3)

Where w; is the weight between input i and output unit j and
avg; is the average activity of input 7 for category ;.

This method has been used in several papers since (e.g.
Johnson et al. 2009; Lewis-Peacock et al. 2011; McDuff
et al. 2009; Saariméki et al. 2016), and is also featured in the
Princeton MVPA toolbox (http://code.google.com/p/
princeton-mvpa-toolbox/), one of the most popular
toolboxes for machine learning with neuroimaging data.
However, its detection efficacy has, to our knowledge, never
been properly tested. While the rationale for multiplying
weight strengths by average voxel activity in order to
identify important features is that the effect a particular
feature has on classification, in the NN framework, is the
strength of the input multiplied by the strength of the
weight, informal tests in our lab suggest a potential problem
with this approach. Specifically, using simulated data, we

Table 1:
feature.

observed that multiplication by average voxel activity might
allow voxels with high activity values to be deemed important
even though they do not contribute meaningfully to the
classification. An example of this would be voxels that show
a similar pattern of increased activity for two categories that
are being classified. These “overlapping” voxels do not carry
any discriminating information, yet have high activity values,
leading to their possible identification as important features.
While this method is technically not used as feature selection
(since no subsequent analyses are performed on the identified
features), it has a similar goal: to determine which features
contribute to the classification. If this method were to be
used for feature selection, the extracted irrelevant features
could increase dimensionality without a commensurate
increase in predictive accuracy, the opposite of the goal of
feature selection techniques. We implemented the
importance mapping method in the same manner as our NN
feature selection method (see below), with one difference: the
multiplication by average voxel activity of the weights
specified by the importance mapping approach.

Iterative NN with Cross-Validation

Our version of a NN feature selection method is again a wrap-
per approach, because it looks at classification accuracy to
determine important features. We used a single-layer neural
network where the features serve as inputs, with output nodes
for each of the categories. Each run lasted 50 training epochs
and on every epoch weights w; were batch updated according
to the delta rule:

aw; = a(t-g(h))g (h)x; (4)
Where « is the learning rate (fixed at 0.01), g() is the sigmoid
function and x; are the input values. Weights were initialized
by drawing from a normal distribution with mean 0 and stan-
dard deviation 0.01.

Pseudocode outline for the RFE-SVM procedure. This procedure returns a sorted ranking starting with the most discriminating classification

Algorithm Feature selection: RFE-SVM

for 20 iterations do

train_samples = 90 % of training set

while # features > 0 do

sort features based on abs(weights)
eliminate feature with smallest score

end while

1:
2
3
4: train SVM on train_samples
5
6
7

8: save ranked list of eliminated features

9: end for

10: summed_ranks = sum(feature_ranks)
11: sorted_importance = sort(summed_ranks)

12: return sorted_importance
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At each epoch, performance of the neural network was test-
ed on a validation set to prevent overfitting. Following the
completion of a training run, weights from the best performing
epoch on the validation set were stored, and weights were
summed over all training runs. These summed weights were
then sorted according to their absolute value, with the highest
absolute values belonging to the most important classifying
features. An outline of the procedure can be seen in Table 2.

F-Test

The F-test is one of the oldest and most widely used forms of
feature selection because of its simple formulation, easy inter-
pretation and inclusion in most statistical packages. It has been
used extensively with regard to fMRI research (Cox and Savoy
2003; Zeithamova et al. 2017) and is directly available in many
libraries and packages for machine learning (Hebart et al. 2015;
Pedregosa et al. 2011). This method decomposes the variability
of the data in terms of between- and within-class variability.
The ratio of these variabilities for each voxel gives that voxel’s
F-value, which is used to rank its importance.

_ between—class variability
~ within—class variability

(5)

Our implementation of the F-test is very similar to that of
the other techniques mentioned here (Tables 1 and 2), with F-
values for each separate voxel summed across all 20 iterations,
resulting in a ranking of feature importance.

Mutual Information

Mutual information is an information theoretic measure for
the relationship between two random variables. Noteworthy
advantages of this measure are: 1) its invariance to transfor-
mations of the feature space that preserve order of the original

Table 2:

elements, 2) its ability to measure any sort of relation between
random variables, including non-linear relationships, and 3)
its easy interpretation as the amount of shared information
between the variables (Vergara and Estévez 2014). Owing to
these desirable properties, it’s often been used in various
forms for feature selection (Michel et al. 2008; Sayres et al.
2005). Here, we limit ourselves to the form described in Ross
(2014), which relies on nonparametric methods based on en-
tropy estimation from k-nearest neighbor distances to measure
the dependency between a continuous and discrete data set
(i.e. feature values and class labels). We used the default
implementation of this algorithm (with k neighbors = 3)
from the scikit-learn package. The procedure is again very
similar to that of the other methods (Tables 1 and 2), where
on each iteration, the mutual information is estimated for
each voxel and then summed to return an array of feature
importance.

ReliefF

Our last feature selection method is ReliefF, which is a multi-
variate filter technique based on measuring features’ capabil-
ity in preserving sample similarity (Zhao et al. 2013). It is an
extension of the Relief algorithm, which is only suitable for
binary problems. A big advantage of this technique is that it is
able to detect conditional dependencies between features (Igor
Kononenko et al. 1997). Within ReliefF, the importance of a
feature increases if it is more similar to itself in nearby in-
stances of the same class (nearest hits) than in nearby instances
of other classes (nearest misses). A more exact formulation of
ReliefF, as described in Zhao et al. (2013) is as follows.

Assuming c classes with 1 instances in each class; all fea-
tures have been normalized to unit length; and both NH(x) and
NM(x) have k instances, the evaluation criterion of ReliefF is
equivalent to:

Pseudocode outline for the NN procedure. This procedure returns a sorted ranking starting with the most discriminating classification feature.

Algorithm Feature selection: Neural network

for 20 iterations do

1

2 train_samples = 90 % of training set

3: for 50 epochs do

4 forward propogation using train_samples

5 update weights with delta rule

6: weights = updated weights

7 val_acc = acc on validation set

8: end for

9: best_weights = weights for epoch with max(val_acc)
10: end for

11: summed_weights = abs(sum(best_weights))

13: return sorted_importance

2: sorted_importance = sort(summed_weights)
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2.1;11 (f i N (xi) j) 2
(c—Dk

1 2
k
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2z

(6)

With f; as the value of the feature f on the ith instance, x;;
NH(x;); denotes the jth nearest hit of x;; and NM(x;, y); denotes
the jth nearest miss of x; in class y.

We used this version of ReliefF with k=35 neighboring
instances (nearest hits/misses). We used the same general pro-
cedure as with the other methods, where we calculate the
ReliefF values for all voxels on each iteration and sum these,
resulting in a sorted array of feature importance.

Data Sets
Simulated Data Set

The 3 methods were first compared on 5 simulated data sets
with varying signal-to-noise ratios (SNR). The advantage of
this is that it offers a fully controlled environment where we
know beforehand which features contain relevant classifica-
tion information. Each of these 5 data sets consisted of 15 x 3
subsets (training, test and validation) of 100 trials and 300
features. The 100 trials were split up in 50 trials of category
A and 50 trials of category B. In category A trials, 280 noise
features were created by sampling from a normal distribution
with mean 0 and standard deviation 1, while 20 signal features
were created by sampling with a mean of 0.2, 0.4, 0.6 or 0.8
depending on the data set (low or high SNR) and a standard
deviation of 1. Category B trials were created similarly, but 10
of the signal features overlapped with 10 signal features of
category A. Thus, both category A and B had 10 category-
specific features, and 10 overlapping ones. There were there-
fore 20 features (out of 300) relevant for classification, since
the overlapping signal features carried no discriminatory in-
formation. The goal of our feature selection methods was to
extract the relevant non-overlapping features.

Haxby Data Set

We used the Haxby data set (Haxby et al. 2001) as a benchmark
for comparison, as it has been repeatedly reanalyzed for evalu-
ation and comparison of machine learning approaches (Chou
etal. 2014; Do et al. 2015; Fan and Chou 2016; Kuncheva et al.
2010; O’Toole et al. 2005). The Haxby study examined face
and object representations in human ventral temporal cortex in
a blocked-design fMRI study. A total of 6 subjects are included
in the dataset, and each subject experienced 12 experimental
runs (24 s each). During each run, participants passively viewed
8 images of 8 different objects (e.g. faces, houses, scissors,
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bottles, etc.). The images were shown for 500 ms and then
followed by a 1500 ms inter-stimulus interval. The experiment
thus had a total of 12 X 8§ =96 samples from each individual,
except for subject 5, where one of the runs was corrupted and
not used in the analysis. The same ventral temporal mask was
applied as was used in the original paper. The data set
underwent standard preprocessing for MVPA: motion correc-
tion, linear detrending and z-scoring.

Zeithamova Data Set

We also used a more recent data set to compare our feature
selection methods on (Zeithamova et al. 2017). This data was
obtained from the OpenfMRI database under accession number
ds000238 and was originally used to investigate experimental
design optimization by looking at the effect of various trial-
timings on decoding accuracy. Designs varied in the number
of trials and onset-to-onset ranging from slow 12 s trials with
two repetitions of each item to quick 6 s trials with four repeti-
tions per item. A trial was composed of viewing a 2 s image of
either an animal or a tool and participants were instructed to
encode these images for a subsequent recognition task. For their
analyses, the researchers had pre-defined ROI’s in which they
used F-test feature selection to select 100 voxels as input for an
SVM classification. They found equal performance across all
timing conditions for category decoding, while item-level in-
formation was better detected using slow trial timings.

For computational purposes, we only used the first 15 par-
ticipants and the medium (8 s) to slow (12 s) onset-to-onset trial
timings. We also limited the analyses to a pre-defined region of
visual cortex for which Zeithamova et al. found optimal
decoding accuracy. Furthermore, because of the higher resolu-
tion of the data here (2 x 2 x 2 voxels) and the resulting higher
amount of voxels, we found it unfeasible to perform RFE-SVM
due to time constraints. The same standard preprocessing steps
as for the Haxby data were applied and because image acqui-
sition was time-locked to stimulus presentation, we took the
average of the third and fourth TR after stimulus presentation,
corresponding to peak HRF as our event of interest.

General Procedure

All analyses were performed using python version 2.7.6 with
Nilearn (for Haxby data set), scikit-learn (for out-of-the-box
RFE-SVM) (Abraham et al. 2014) and custom code on a server
running Linux Ubuntu 14.04 LTS (Kernel version 3.13.0 with
10 x 16 GB RDIMM and 2 x Intel Xeon E5—2620 processors).

All feature selection methods were embedded in the same
general procedure for an apples-to-apples comparison. First
the data was divided in 3 subsets. These subsets are then
assigned to be a training, validation or test set according to a
cross-validation scheme. This is replicated 6 times in total, so
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that each of the 3 subsets is chosen exactly once as training,
test or validation set.
The procedure can be summarized as follows:

1. Randomly take a subset (90% of samples) out of training
set.

2. Run the feature selection method on this subset. Save
weights for neural network, save rankings for RFE-SVM.

3. Repeatsteps 2 and 3 20 times. At the end, use the summed
weights (NN, ReliefF), rankings (RFE-SVM), F-values
(F-test) or mutual information values (MI) to sort the fea-
tures in order of importance.

4. For the simulation data set, select the 20 most important
features, for the Zeithamova data set, select the 100 most
important features. If on the Haxby data set, use a forward
selection scheme, starting with the most important feature,
each time classifying on the validation set. Take all features
from the step where classification accuracy is at the median.

5. Train an SVM with the selected features on the training +
validation set.

6. Evaluate the performance on the test set.

7. Replicate steps 1-6 6 times, mixing up the cross-
validation scheme so that each set is used once for train-
ing, once for validation and once for testing.

8. Measure the pairwise Jaccard index for each selected fea-
ture set of each replication and average to get an overall
stability metric.

Metrics
Accuracy

Accuracy for all methods was assessed after feature selection
using an SVM, trained on our training and validation set, for
classification; and accuracy was evaluated on a test set. This
was replicated six times, so that each set was a training, vali-
dation or test set, and the average across replications and its
standard deviation were reported.

Stability

Stability refers to the ability of feature selection methods to
select the same features from the data across replications. A
methodological framework for stability selection, incorporat-
ing resampling, was developed and validated by Meinshausen
and Biithlmann (2010). It entails repeated re-sampling of sub-
sets of the original data and performing feature selection on
each of them. Features with a frequency of being selected
higher than a user-defined threshold are then selected for in-
clusion in a final set of features. This results in a more stable
set of features than would be obtained by a single instance of
feature selection. The procedure can be used in conjunction

with any feature selection procedure and classifying
algorithm.

We used the Jaccard index as a measure of the stability of
the feature selection across replications. This metric is com-
monly used to compare the similarity or diversity of finite
sample sets. It is defined as the size of the intersection of
two sets, divided by their union and so always has values
between 0 and 1.

_lanB

J(A,B) = v

(7)

Because the Jaccard index correlates positively with the
proportion of features selected, we established a baseline
against which our results were compared. Specifically, we
computed the expected Jaccard index by comparing 1000 ran-
dom sets of features. The size of these sets was taken from a
truncated normal distribution (ranging between 1: max
amount of features) with mean equal to the average subset size
for the specific subject and method and standard deviation
equal to the standard deviation of the subset size. The
Jaccard index was computed for all pairwise combinations
of random subsets and the average taken as our estimate of
what a Jaccard index under random feature selection would
constitute.

Time

Finally, as noted above, some feature selections can be com-
putationally intensive. We therefore also measured the time
needed for the method to run. Computation time can be rele-
vant when dealing with particularly large data sets, such as
fMRI, or when embedding the feature selection method in an
iterative procedure as is the case here. Three of the methods
are wrapper approaches, which are generally not known for
their high computational efficiency, but we expect RFE-SVM
especially to be slower because of the backward selection
procedure.

Data
Haxby Data Set

For the Haxby data, a subset size selection procedure was
necessary to determine the optimum number of features
(Table 3). After feature selection, features are ordered by the
‘importance’ of each feature, and we used a forward selection
scheme which incrementally adds the next most ‘important’
feature on each iteration after which classification perfor-
mance is assessed. For each of these feature sets, an SVM
was trained on the training set and performance assessed on
the validation set. We then chose the subset size for which
accuracy was at the median.
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Table 3:

Pseudocode outline for the general procedure on the Haxby data.

Algorithm General procedure: Haxby data

Lot T LI o

end for

o

median(subset_acc)

: for J = 1:6 replications do

CV - assign training, validation, test set

run feature selection algorithm

for for K = I:total number of features do
subset_voxels = sorted_importance[1:K]
train SVM on training set, using subset_voxels
subset_acc[K] = trained SVM on validation set

subset = sorted_importance[1:L] if subset_acc[L] ==

10: train SVM on train and validation set, using subset
1 predict_acc = SVM accuracy on test set

12: end for

13: calculate mean accuracy and sd across replications
14: calculate all pairwise jaccard index
15: return mean_acc, sd, subset_size, mean_jaccard_index

Simulation Data Set

The procedure for the simulation data was similar to that of the
Haxby data (Table 4), the only difference being that there is no
subset size selection here. Since the number of discriminative
features is known for our simulated data, we selected the
20 most ‘important’ features as determined by the feature
selection procedure as the final feature set for testing.

Zeithamova Data Set

For this data set, our procedure was nearly identical to that of
the simulation data set (Table 4), except we chose the 100
most relevant features at each step which corresponds to the
number of features selected in the original paper. This also
allows easier comparison of the stability metric as it will not
be confounded with feature subset size.

Table 4:

Results
Simulation

An overview of the results can be seen in Table 5. Mean
accuracy overall is highest for the F-test and our NN, and
lowest for importance mapping (NN-Polyn) and mutual infor-
mation (MI). Since the only difference between the NN and
importance mapping method is the average voxel activity
multiplier, this seems to suggest a problem with this approach.
Stability measures reveal an even larger difference between
the methods. Note that two stability measures were assessed
here: one is the similarity between selected feature sets across
replications; the other is the similarity of the selected feature
sets with the truly important features (that we know a priori)
(Figs. 1 and 2). In our comparisons based on simulated data,
there is no variation in the number of features selected each
time; during selection, the 20 best features were always

Pseudocode outline for the general procedure on the simulation data.

Algorithm General procedure: Simulation data

for J = 1:6 replications do

CV - assign training, validation, test set
run feature selection algorithm
subset = sorted_importance|1:20]

predict_acc = SVM accuracy on test set

end for

1:
2
3
4
5: train SVM on train and validation set, using subset
6
7
8:

calculate mean accuracy and sd across replications
9: calculate all pairwise jaccard index
10: return mean_acc, sd, mean_jaccard_index
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chosen, corresponding to the number of (actual) relevant fea-
tures in our simulated data. Fixing the number of features in
this manner allows for cleaner comparisons since the number
of selected features is correlated with the similarity index (see
below). The Jaccard index across replications is consistently
higher for the NN and importance mapping than for the other
methods (Table 5). This stability across replications scales
well with the signal of the data for the NN, RFE-SVM, F-
test and ReliefF, while for importance mapping and MI it is
very high no matter the signal-to-noise ratio (SNR) and does

Table 5

not increase much with increasing SNR. Furthermore, when
we look at the similarity of the selected feature sets with the
truly important features in our simulated data, we see much
worse results for importance mapping and MI compared to the
other techniques. This suggests that, although importance
mapping and MI are stable, they consistently pick up irrele-
vant features from this data set. Additionally, the Jaccard in-
dex with the set of truly relevant voxels is highest for the NN
and F-test indicating that these are better at finding the correct
features. This is also reflected in the standard deviation of the

Results on the simulated data sets. Mean accuracy without feature selection is the same for all methods, since the procedure is the same; it is the

classification accuracy on the test set using an SVM, without any feature selection

Method SNR of the relevant Jaccard index across Jaccard index with the set of Mean STD  Mean accuracy without feature
features replications relevant voxels accuracy (%) (%) selection (%)
NN 0.00 0.76 No relevant voxels 50.17 340 50.63
NN-Polyn 0.87 49.98 3.37
0.51 51.03 3.75
RFE-S-
VM
MI 0.78 51.51 3.19
F-test 041 50.10 3.78
ReliefF 0.75 50.18 4.03
NN 0.20 0.75 0.16 56.27 3.61 5510
NN-Polyn 0.86 0.11 55.49 397
0.53 0.13 55.48 4.12
RFE-S-
VM
MI 0.78 0.06 54.51 3.79
F-test 0.47 0.18 57.21 4.12
ReliefF 0.75 0.06 53.03 441
NN 0.40 0.84 0.52 73.68 316  67.67
NN-Polyn 0.86 0.21 67.42 4.40
0.59 0.30 68.52 436
RFE-S-
VM
MI 0.78 0.09 60.61 5.31
F-test 0.66 0.49 75.92 2.80
ReliefF 0.80 0.20 6743 5.46
NN 0.60 0.94 0.84 88.68 2.54  81.10
NN-Polyn 0.89 0.32 80.08 2.87
0.69 0.48 83.36 2.44
RFE-S-
VM
MI 0.80 0.21 76.67 4.15
F-test 0.98 0.84 89.47 1.76
ReliefF 0.87 0.49 85.27 2.98
NN 0.80 0.99 1.00 95.11 1.90  89.90
NN-Polyn 0.92 0.36 86.95 2.38
0.74 0.54 91.21 2.31
RFE-S-
VM
MI 0.84 0.42 90.16 2.69
F-test 0.96 0.97 95.26 1.20
ReliefF 0.92 0.76 94.43 1.63
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Mean Jaccard index across replications and data sets
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Fig. 1 Average Jaccard index computed from looking at the pairwise
similarities between the sets of selected features for each replication
collapsed over all strictly positive SNR data sets. Error bars represent
the average of the standard errors of the mean for the strictly positive
SNR data sets

mean accuracy, which is usually lower for the NN and F-test.
While the NN and F-test perform better than the RFE-SVM,
MI and ReliefF in both our measures of performance (accura-
cy and stability), it should be noted that both feature selection
methods lead to an increase in accuracy compared to no fea-
ture selection. In contrast, feature selection using importance
mapping or MI show no consistent improvement over classi-
fication without feature selection. Comparing algorithm run
time also shows a large difference between methods. As ex-
pected, the RFE-SVM took considerably longer than the NN
and importance mapping. Specifically, it took on average 54 h
for the RFE-SVM to run on 1 of the simulated data sets, while
the NN, ReliefF, F-test and importance mapping took no lon-
ger than 3 min for the same data. M1 also took longer, clocking
in at 43 min on average, but this did not result in increased
performance.

Mean Jaccard index across data sets with the set of true
relevant voxels

o

N

o
]

Jaccard index
o
B
o
.

0.30
I
-
0.20 ‘)
0.10
NN NN-Polyn RFE-SVM mi F ReliefF

Fig. 2 Average Jaccard index across data sets with strictly positive SNR
computed from looking at the similarities between the sets of selected
features for each replication and the set of truly relevant voxels. Error bars
represent the average of the standard errors of the mean for the positive
SNR data sets
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Haxby Data

While our results using simulated data are promising, a critical
issue is how well they translate to real fMRI data. We tested
the RFE-SVM, F-test, MI, ReliefF and NN methods using the
Haxby data set (described above) and observed very high
stability for ReliefF and comparably high decoding accuracy
for the F-test, NN and MI. Unlike the simulation data, we did
not fix the number of selected features here since the true
number of relevant voxels is not known a priori. Instead, we
used a subset size selection procedure (see Methods) to deter-
mine the number of selected voxels. Even though accuracy for
the NN was comparable or higher than that of the other
methods, the number of voxels extracted was lower for most
subjects, indicating that the NN was more likely to rank more
informative features higher than the other methods (Table 6).
In contrast to the simulated data set, feature selection did not
lead to an improvement in classification accuracy compared to
no feature selection. A possible explanation for this may be
that most of the ventral temporal cortex ROI used here is
highly informative; nearly all features contain classifying in-
formation in varying degrees of importance, and thus addi-
tional features always provide more information relevant to
classification (Chu et al. 2012).

Because we had an average and standard deviation for the
number of selected features on each iteration across replica-
tions, we were able to estimate an expected Jaccard index for
this subset size if features were selected randomly. This was
calculated by repeated random sampling of features and aver-
aging all pairwise Jaccard indexes, with the subset size taken
each time by a random value of a normal distribution with
mean equal to the empirical subset size and standard deviation
equal to the standard deviation of the subset size across itera-
tions. We observed consistently higher stability across repli-
cations for the NN and F-test compared to RFE-SVM and MI.
Interestingly, stability for ReliefF was exceedingly high here
for all subjects, but this was also accompanied by the lowest
decoding accuracy while using the most voxels. Unlike the
simulation, varying numbers of selected features were possi-
ble here due to the subset selection procedure. But even
though a larger number of selected features correlates posi-
tively with the Jaccard index (as can be seen in the expected
Jaccard index column, Table 6), the NN overall has high sta-
bility and accuracy despite a lower number of selected features
for most subjects. The difference between the expected
Jaccard index by chance and the measured Jaccard index is
also substantially larger for the NN and F-test compared to MI
and RFE-SVM, but not compared to ReliefF (Table 6).

Zeithamova Data

Results from the Zeithamova data set show a slightly different
picture. Here, the NN does not perform as well as the ReliefF
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Table 6 Results from the methods on the 6 subjects of the Haxby data set

Subject Method Average number of STD of number of Jaccard Expected Jaccard Index for Mean STD Mean accuracy without
selected features selected features index  # of selected features accuracy (%) feature selection (%)
(%)
1 NN 175/577 44.95 0.55 0.17 88.63 1.62  93.63
227/577 46.98 0.35 0.24 88.08 422
RFE-S-
VM
MI 220/577 36.04 0.42 0.23 89.00 1.26
F-test 235/577 18.92 0.59 0.25 88.19 0.90
ReliefF 255/577 13.66 0.86 0.28 89.76 0.77
2 NN 196/464 29.24 0.61 0.26 77.78 2.07 85.24
206/464 23.67 0.36 0.28 78.94 3.12
RFE-S-
VM
MI 213/464 11.26 0.51 0.30 80.38 1.71
F-test 213/464 18.66 0.57 0.30 79.51 1.64
ReliefF 201/464 19.73 0.81 0.28 77.20 3.15
3 NN 142/307 8.16 0.56 0.30 69.62 247 77.08
129/307 16.04 0.33 0.26 66.32 1.55
RFE-S-
VM
MI 132/307 16.67 0.47 0.27 67.82 2.74
F-test 132/307 13.39 0.65 0.27 67.01 3.00
ReliefF 124/307 16.25 0.75 0.28 64.24 391
4 NN 214/675 37.25 0.55 0.19 76.13 1.82 83.91
242/675 42.48 0.34 0.22 72.51 2.10
RFE-S-
VM
MI 245/675 44.36 0.39 0.22 75.98 4.24
F-test 280/675 42.21 0.53 0.26 77.20 2.72
ReliefF 285/675 32.54 0.80 0.27 75.93 2.14
5 NN 183/422 27.98 0.58 0.27 79.39 1.83  86.36
183/422 27.24 0.37 0.27 76.64 3.36
RFE-S-
VM
MI 185/422 16.56 0.44 0.28 80.18 237
F-test 198/422 9.06 0.53 0.31 79.67 295
ReliefF 191/422 12.28 0.87 0.29 78.79 2.09
6 NN 128/348 24.52 0.50 0.18 72.51 390 80.90
140/348 27.05 0.32 0.24 70.43 2.12
RFE-S-
VM
MI 148/348 23.11 0.50 0.27 72.80 4.66
F-test 126/348 19.03 0.65 0.22 72.97 1.87
ReliefF 169/348 6.05 091 0.29 73.09 343
NN 173/465 28.68 0.56 0.24 77.34 312 84.52
AV- 188/465 30.57 0.34 0.25 75.49 2.74
RG. RFE-S-
VM
MI 191/465 24.67 0.46 0.26 77.70 2.83
F-test 197/465 20.21 0.59 0.27 77.43 2.18
ReliefF 204/465 16.75 0.83 0.28 76.50 2.58

or F-test when it comes to stability, however it does have the ~ Note that, for simplicity and ease of comparison, no subset
highest decoding accuracy, suggesting that in this case itmight ~ size selection procedure was done. Each feature selection
be picking up on interchangeable sets of very relevant voxels.  method only had 100 voxels to work with. Interestingly, again
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we find MI has the lowest stability and decoding accuracy of
all the methods tested here, which is similar to its performance
on the simulation data. We also note that decoding accuracy
after feature selection is worse than no feature selection. This
is similar to what we found for the Haxby data set and might
again be due to the use of a visual cortex ROI, where most
features contain some relevant information in varying degrees
(Table 7).

Violating Homoscedasticity

Across the various data sets we tested, we noticed a very
comparable performance for the F-test and our NN. We decid-
ed to test if this similarity holds for cases where we violate an
assumption of the F-test, namely that of homogeneity of var-
iance. We did this by tripling the standard deviation (thus
decreasing SNR) of relevant voxels for one of the classes.
An overview of the results can be seen in Table 8. We found
no large differences in decoding accuracy between the two
methods, though the NN is consistently slightly better.
However, there is a large difference now between the methods
in favor of the NN when it comes to stability (Jaccard index
across replications) and the detection of the set of true voxels
(Jaccard index with the set of relevant voxels). The NN thus
seems to be less affected by violations of this assumption and
is able to better detect the truly relevant voxels, and this might
be hard to tell by merely looking at the decoding accuracy.

Discussion

In this study, we evaluated a novel method of feature selection
based on a single-layer neural network which incorporates
cross-validation during feature selection and stability selection
through iterative subsampling. This method was compared on
simulated data sets, a recent data set from the open fMRI
project and the Haxby data set, which has been used exten-
sively for benchmarking fMRI and MVPA analyses. For com-
parison, we focused on several widely used and tested feature
selection methods such as importance mapping, RFE-SVM,
Mutual information, F-test and ReliefF.

Using the simulated data set we looked at classification
accuracy, time, stability and correct detection of relevant
voxels for the 3 methods. In general, we found superior

performance on all 3 measures for the NN, achieving higher
accuracy, stability, and in less time than the alternative
methods. Notably, stability, defined as the similarity of select-
ed feature subsets when the training data is perturbed, was
lowest for RFE-SVM, and similar for importance mapping
and our NN.

While the stability of importance mapping was comparable
to the NN, this does not necessarily indicate that the features
identified by importance mapping were informative, as can be
seen in the accuracy score and feature subset correspondence
with the set of truly informative voxels. Important to note is
that the algorithm used in importance mapping is exactly the
same as the one used for the NN, barring the multiplier to the
weights. Thus, any differences in classifier accuracy following
feature selection, stability or detection of relevant voxels
should be due to this multiplier. Though importance mapping
may work well in some situations, it may fail for situations in
which voxels have similar (increased) activation for multiple
categories being classified due to the multiplier causing irrel-
evant voxels to be selected based primarily on their activity.
The same is true for mutual information, which shows decent
stability, but has very poor detection of true relevant voxels,
resulting in lower accuracies than using no feature selection.
In contrast to these, RFE-SVM suffers from much lower sta-
bility, but truly relevant voxels have a slightly higher chance
of being identified, reflected by accuracy scores.

Our feature selection methods, applied to real data from the
Haxby data set, largely replicate our results using simulated
data. Here, we again find the lowest stability for RFE-SVM,
with Jaccard similarity coefficients closer to what is expected
by chance. A similar finding of poor stability for RFE-SVM
has been reported many times in the literature (Dittman et al.
2011; Haury et al. 2011; A. Kalousis et al. 2005; Stiglic and
Kokol 2010), where they compared RFE-SVM with other
feature selection methods. They suggest that this low stability
is due to multiple iterations of eliminating features and
reassigning weights to remaining features. Different subsets
of samples can result in different feature rankings and elimi-
nation of different features at a given step in the selection
procedure. Hence, multiple iterations can cause higher insta-
bility of the top k selected features.

Besides its low stability, RFE-SVM is computationally ex-
pensive due to its iterative procedure. The implementation of
RFE-SVM used in this study is part of the Scikit-learn toolbox

Table 7  Averaged results from the methods on the 15 subjects of the Zeithamova data set

Method Mean Jaccard index STD Mean Jaccard index Mean accuracy (%) Mean of STD (%) Mean accuracy without feature selection (%)
NN 0.16 0.04 74.27 493 79.48

MI 0.15 0.01 67.20 6.04

F-test 021 0.03 72.50 545

ReliefF  0.20 0.03 73.51 497
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Table 8 Results of simulation data for NN and F-test after violating the assumption of homoscedasticity

SNR of the relevant features for category 1 (SNR  Jaccard index Jaccard index with the ~ Mean STD Mean accuracy without
Method of the relevant features for category 2) across set of relevant voxels accuracy (%) feature selection (%)
replications (%)

NN 0.00 (0.00) 0.72 No relevant voxels 51.41 3.52 4947

F-test 0.46 50.64 3.60

NN 0.20 (0.07) 0.74 0.13 54.46 325 5323

F-test 0.49 0.10 52.78 3.83

NN 0.40 (0.13) 0.81 0.39 67.09 331 61.23

F-test 0.58 0.30 67.03 3.73

NN 0.60 (0.20) 091 0.65 81.28 2.60 71.30

F-test 0.90 0.49 79.74 3.18

NN 0.80 (0.27) 0.93 0.80 88.31 2.09 80.97

F-test 0.74 0.61 87.91 2.29

(Pedregosa et al. 2011), and was not optimized for speed or
efficiency. Various adjustments to the out-of-the-box.

RFE-SVM routine, e.g. a simple adjustment of the number
or percentage of features eliminated at each step of the back-
ward selection may be able to improve efficiency, albeit at a
potential cost of precise feature rankings. Similarly, the NN
algorithm described here was not optimized for either the sim-
ulated or real data sets, e.g. by selection of optimal meta-
parameters or training times. Nevertheless, despite the lack
of optimization of our NN method, overall it outperformed
widely-used feature selection approaches on our metrics.

Surprisingly, ReliefF showed very high stability on the real
data, greater than that of the NN, contrary to what we found
for the simulation data. However, it seems to be doing less
with more since it selects on average the largest voxel subset
of all methods, yet has worse accuracy than our NN, which
selects the smallest subset. This suggests that ReliefF is not
selecting the most relevant voxels, but a set of voxels that have
high correspondence across replications. Mutual information
on the other hand shows poor stability but high accuracy for
the Haxby data. On the Zeithamova data, meanwhile, it per-
forms considerably worse in terms of accuracy and also has
the lowest stability, similar results as for the simulated data set.

Finally, the F-test showed similar results as the NN on both
the real data sets and the simulated data, showing the best
overall performance in terms of accuracy, speed and correct
detection of relevant features, while having very good
stability.

While they seem comparable here, there are two reasons
why one might prefer the NN over the F-test. First, we showed
that the NN is more robust to violations of homoscedasticity,
an underlying assumption of the F-test. Second, the F-test is a
very inflexible method compared to the NN, which can be
more easily tweaked and optimized (e.g. through selection
of appropriate hyper-parameters) to better accommodate the
data. However, due to its all-around good performance in
terms of decoding accuracy, speed, stability and also its ease

of implementation, the F-test is a viable alternative to the NN
for feature selection with fMRI data, provided that the under-
lying assumptions of the F-test are satisfied. For both real data
sets, we found lower classification accuracy after feature se-
lection for all techniques used here. This is likely due to the
nature of the data and the methods used (Chu et al. 2012; Kerr
et al. 2014). Since the use of the ventral temporal and visual
cortex masks are already a form of knowledge-driven feature
selection, most voxels within these ROI are likely diagnostic
about category labels. Additionally, due to the nature of the
task (identification of visual information), it is also likely that
many of these features are redundant. Since none of the
methods described here remove redundant features as part of
their algorithm, these redundant features that are nevertheless
highly informative, will be retained; while features providing
less diagnostic, but unique information, will be excluded (Kerr
et al. 2014). Additionally, redundant features can cause unsta-
ble rankings, which can also explain the poor stability of RFE-
SVM (Tolosi and Lengauer 2011). Therefore, it is likely that
RFE-SVM is not well suited to imaging data without control-
ling for redundancy first.

Many feature selection techniques strip redundant features
in an attempt to obtain an optimal feature subset which has
minimal cardinality while maximizing performance (Vergara
and Estévez 2014). These techniques usually boast high accu-
racy scores on data sets with many correlated features, as is the
case with neuroimaging data due to spatial feature correlations
(i.e. nearby voxels showing similar activation patterns).
However, if the goal is to obtain a set of interpretable voxels
possessing discriminative information pertaining to the cate-
gories, redundant variables should not be discarded (Wang
et al. 2015). Methods such as the ones used in this paper do
not strip redundant features, so they serve this goal well.
Similar to importance mapping, our NN can be used to deter-
mine which voxels are highly relevant for classification, but
unlike importance mapping, our NN approach will not select
irrelevant (non-discriminative) features due to shared BOLD-
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activation between categories. And since a prerequisite of an
interpretable set of voxels is that it is stable, i.e. invariant to
perturbations in the training data, the NN is more fitting to use
than RFE-SVM.

Neural networks are rarely used for feature selection in
imaging data, likely due to the popularity and availability of
feature selection methods such as RFE-SVM, F-test and other
out-of-the-box methods. The neural network implementation
used here has a very basic architecture, yet merely adding
stability selection through subsampling and cross-validation
during learning can yield better performance than the more
popular methods shown here. Utilizing the inherent flexibility
of neural networks, future research could pair stability selec-
tion with various more complex and powerful neural network
implementations to determine what parameter settings yield
optimal stability and detection of relevant voxels.
Furthermore, the use of simulations in exploring and compar-
ing feature selection techniques is underappreciated. Data sets
with varying properties (e.g. feature amount, redundancy, rel-
evance, noise, non-linearity, number of samples) that resemble
BOLD-activation patterns can be tested and benchmarked on
to inform researchers of which feature selection methods and
parameters are most appropriate for their data and research
question.

Conclusion

In this study, we evaluated a novel method of feature selection
based on a single-layer neural network which incorporates
cross-validation during feature selection and stability selection
through iterative subsampling. This method was compared to
several popular feature selection techniques, including impor-
tance mapping, a technique used to determine which voxels
contribute meaningfully to classification. On a simulated data
set, we found superior performance of our method on compu-
tational time, accuracy, stability and detection of truly relevant
voxels compared to the alternative methods. Importantly, we
found that importance mapping consistently selects irrelevant
voxels, leading to poor accuracy. We also found very poor
stability and less accurate classification on benchmark data
for RFE-SVM compared to the NN. Future research can ex-
plore how best to optimize neural networks for a stable detec-
tion of relevant features in various data settings.
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The data sets used in this article are freely available online.
The Haxby data set was made available under the terms of the
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005031). Its accession number is ds000238 and it was made
available under the ODC Public Domain Dedication and
License. Code for generating the simulated data can be
found at the public GitHub repository (https://github.com/
deraevejames/data-generation_FS). RFE-SVM, mutual
information and F-test methods were taken from the scikit-
learn library for Python (RRID:SCR_002577), while ReliefF
code was used from scikit-feature, an open-source feature se-
lection repository for Python (http:/featureselection.asu.edu/
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